

Observatoire de Versailles Saint-Quentin-en-Yvelines CAMPUS DE SAINT-QUENTIN-EN-YVELINES

1

Uvsq-Sat NG

17 March 2024

Mustapha MEFTAH [F4IXO]

General objectives of the mission

- <u>(1) Science</u> : Earth observation, Climate physics, GHGs, ERB, Solar physics, ...
- <u>(2) Education & outreach</u> : Satellite, Payload development, Software development, Training material.
 - Enable students to move towards Nanosat via start-ups in creation
 - Foster the emergence and development of start-ups in the Nanosat field
 - Make the space field more accessible to technicians
 - Create new vocations
 - Thinking about tomorrow's jobs
 - Promote the 'Space Academy of Île-de-France'

• (3) Technology demonstration : Satellite, Payload, Spectrometer, Telescope

- Instruments miniaturization for Earth observations and solar physics
- Instruments validation & satellites constellation validation for Earth observations
- Validation of new low mass, low power and compact design instruments that incorporate artificial intelligence on future space flights
- Facilitate collaboration with industrial partners

Observations and models

L'espace et le NewSpace au service du climat, Meftah M., 2023.

Education

- Formations (master, licence, ...)
- Développement de satellites, de charges utiles scientifiques, et de logiciels
- Plus de 60 étudiants impliqués dans ce programme
- Trois thèses soutenues …
- 4 thèses en cours …

2023

2021

Organization

International consortium

International consortium

7

Inspire-Sat 1 Launched on Feb. 2022

Inspire-Sat 2 Launched on Jan. 2021

Inspire-Sat 3

Inspire-Sat 4 Launched on Jul. 2023

🕘 🕘 🍚

Inspire-Sat 5

Inspire-Sat 6

Inspire-Sat 7 Launched on Apr. 2023

0

Inspire-Sat X

Partnership Consortium in the project

Partnership Consortium in the Île-de-France Region

Satellites constellation

Phases 0/A, B, C, D

Phase E

Satellites constellation

11

Requirements

	Requirements for Uvsq-Sat—Launched on 24 January 2021 from Cape Canaveral, Florida, USA							
ECV	Absolute accuracy	Stability per year	Spatial resolution	Temporal resolution (global map)				
OSR	$\pm 10.00 \mathrm{Wm^{-2}}$	$\pm 5.00 \mathrm{Wm^{-2}}$	2500 km per element	30 days with one CubeSat				
OLR	$\pm 10.00 \text{Wm}^{-2}$	$\pm 1.00 \text{Wm}^{-2}$	2500 km per element	30 days with one CubeSat				
	Requirements for Ins	spire-Sat 7—Launched o	on 15 April 2023 from Va	ndenberg, California, USA				
ECV	Absolute accuracy	Stability per year	Spatial resolution	Temporal resolution (global map)				
OSR	$\pm 5.00\mathrm{Wm^{-2}}$	$\pm 1.00\mathrm{Wm^{-2}}$	2500 km per element	10 days with two CubeSats				
OLR	$\pm 5.00\mathrm{Wm^{-2}}$	$\pm 1.00\mathrm{Wm^{-2}}$	2500 km per element	10 days with two CubeSats				
	Requ	irements for Uvsq-Sat I	NG—Launch Date in 202	5 or in 2026				
ECV	Absolute accuracy	Stability per year	Spatial resolution	Temporal resolution (global map)				
OSR	$\pm 3.00\mathrm{Wm^{-2}}$	$\pm 1.00\mathrm{Wm^{-2}}$	2500 km per element	5 days with three CubeSats				
OLR	$\pm 3.00\mathrm{Wm^{-2}}$	$\pm 1.00\mathrm{Wm^{-2}}$	2500 km per element	5 days with three CubeSats				
CO ₂	$\pm 4.0{ m ppm}$	$\pm 1.0{ m ppm}$	2–10 km per pixel	> 30 days				
CH_4	$\pm 25.0\mathrm{ppb}$	$\pm 10.0\mathrm{ppb}$	2–10 km per pixel	> 30 days				
	Requirements fo	or a Hypothetical Satelli	te Constellation Named	Terra-F—Horizon 2035				
ECV	Absolute accuracy	Stability per decade	Spatial resolution	Revisit time				
TSI	$\pm 0.54\mathrm{Wm^{-2}}$	$\pm 0.14\mathrm{Wm^{-2}}$	_	24 h				
OSR	$\pm 1.00\mathrm{Wm^{-2}}$	$\pm 0.10\mathrm{Wm^{-2}}$	10–100 km per pixel	3 h				
OLR	$\pm 1.00\mathrm{Wm^{-2}}$	$\pm 0.10\mathrm{Wm^{-2}}$	10–100 km per pixel	3 h				
EEI	$\pm 1.00\mathrm{Wm^{-2}}$	$\pm 0.10\mathrm{Wm^{-2}}$		24 h				
CO ₂	$\pm 1.0{ m ppm}$	$\pm 1.5\mathrm{ppm}$	1–5 km per pixel	3 h				
CH ₄	$\pm 10.0\mathrm{ppb}$	\pm 7.0 ppb	1–5 km per pixel	3 h				

- Mapping of sources and sinks of carbon dioxide (CO_2) on a global scale.

- Global information on atmospheric Methane concentration (CH₄ column density).

Satellites constellation

Synergy with other space-based missions

Uvsq-Sat NG aims:

- To continue the <u>Earth Radiation Budget</u> (ERB) research initiated by Uvsq-Sat and Inspire-Sat satellites. It intends to achieve broadband ERB measurements using advanced yet simple technologies.
- To monitor <u>atmospheric gas concentrations</u> (CO₂ and CH₄) on a global scale and explore their correlation with Earth's Outgoing Longwave Radiation (OLR).

→ Uvsq-Sat NG carries multiple payloads, including Earth Radiative Sensors (ERSs) for tracking solar and terrestrial radiation, a Near-Infrared (NIR) Spectrometer for assessing greenhouse gases (GHGs) concentrations, and a high-definition camera (NanoCam) for Earth imaging. The NanoCam helps with geolocating observed scenes and provides an opportunity to estimate the <u>vertical temperature profile</u> <u>of the atmosphere</u> by observing the Earth's limb.

→ We will also endeavor to capture images of the aurora between 60 and 80 geomagnetic latitude both above North and South oval. Nadir pointing or close Nadir pointing is convenient but limb geometry could also be very interesting. The goal is to conduct a study on <u>auroral structures</u>, with a specific emphasis on the less commonly observed sub-auroral features.

Importance of the key components of the Earth energy budget

Earth Energy Imbalance = Incoming solar – [Reflected solar (OSR) + Outgoing longwave radiation (OLR)]

ISR

□ Importance of the key components of the Earth energy budget

Figure 2. Time series of the measurements for two orbits on 26 March 2021 from the three-axis magnetometer, the three-axis gyrometer, the photodiodes, and the ERS sensors.

OLR

OSR

□ Importance of the key components of the Earth energy budget

Data : UVSQ-SAT 2021-2022 Credits : LATMOS

Importance of GHG and role in Earth energy budget

- CO₂: 1433, 1573, 1603, 1883, 1958 & 2000 nm
- CH₄: 1645 and 1667 nm
- O₂: 1270 nm
- H₂O: Several large absorption bands

- At ~1.6 μ m, the entire CO₂ column is measured. Whereas at ~15 μ m, it's sensitive to the temperature of the stratosphere.

- The $\sim 8 \ \mu m$ band is sensitive to silicates (deserts).

- The ${\sim}10\mu m$ band is sensitive first to the surface temperature and then to emissivity.

- At ~19.2 $\mu m,$ it's sensitive to the presence and characteristics of high cirrus clouds.

- At ~40 $\mu m,$ it depends on stratospheric water vapor.

Importance of GHG and role in Earth energy budget

Predictions of CO₂ and CH₄ evolution rely on:

- In situ measurements
- National inventories and declaration
- Modelling of natural processes (emission/absorption) and exchange processes

Advantage of space systems:

- Global coverage
- Unique sensor

Importance of GHG and role in Earth energy budget

Total column of carbon dioxide [ppmv] for Thursday 28 November 2019. (Credit: Copernicus Atmosphere Monitoring Service, ECMWF)

Carte de Colonne de CO₂ (IASI/Metop-B) mois de décembre 2020

Uvsq-Sat NG, a new satellite to envision the space of tomorrow. An In-Orbit Demonstrator to prepare the SmallSats constellations of the future.

Properties	Value	Comments
Orbit	Sun-Synchronous Orbit (SSO)	Maximum altitude of 600 km, LTAN of 06:30
Design life time	Minimum of 2 years in LEO	3 years desired
Launch date	Between Q2 2025 and Q1 2026	Launch vehicle: Falcon 9, Vega-C or Zéphyr
Launch adapter	QuadPack or EXOpod deployer	Payload mass up to 12 kg
CubeSat type	6U XL	Easy-to-assemble modular design
Launch mass	10.0 kg ¹	Maximum with margins
Dimensions	10.0 cm × 36.6 cm × 22.6 cm	Stowed along X, Y, and Z axes
	111.3 cm × 36.6 cm × 38.8 cm	Unstowed including all deployable elements

Surface: IMA

04114001 2		Spot Diagram	
21/02/2024 Units are µm. Field : RMS radius : 4.1 GEO radius : 7.4	Airy Radius: 3.903 µm. Legend items 1 2 3 4 8 3.294 4.038 6.595 1 9.991 9.005 15.659	refer to Wavelengths	Zemax Zemax OpticStudio 21.3.1
Scale bar : 40	Reference : Chief Ray		objectiveV4.zos

objectiveV4.zos Configuration 1 of 1

+ 1.2
= 1.4
▲ 1.6
+ 1.8
■ 2

Uvsq-Sat NG, a New CubeSat Pathfinder for Monitoring Earth Outgoing Energy and Greenhouse Gases

□ (4) Calibration and tests

AstraLink Network - 2026

□ <u>(6) SOC</u>

Database management system & compute server

- ✓ Intel Xeon Silver 4208 8C/16T
- ✓ 64GB RAM
- ✓ 2x1TB HDD + 2x1TB SSD RAID

Simulation and development

- ✓ 2xIntel Xeon Gold 5220R 24C/48T => 48C/96T
- ✓ 128GB RAM
- ✓ 2TB SSD + 2xDTB HDD RAID
- ✓ Bi GPU: 2xNvidia RTX A5000

Data set name	Data type	Wavelength coverage	Spectral resolution	Sampling
SOLAR-HRS	Composite	0.5 – 4399.1 nm	SOLAR-ISS (< 300 nm): < 1.0 nm	< 0.02 nm
Disk-integrated spectrum	Solar spectral irradiance		QASUMEFTS (300 - 380 nm): < 0.025 nm	
			SPTS (> 380 nm): <0.01 nm	
SOLAR-HRS	Composite	650.0 – 4399.1 nm	SPTS: < 0.01 nm	< 0.02 nm
Disk-center (μ = 1.0)	Solar spectral irradiance			
SOLAR-HRS	Composite	650.0 – 4399.1 nm	SPTS: < 0.01 nm	< 0.02 nm
Intermediate cases	Solar spectral irradiance			
Solar positions				
μ = 1.0, 0.9, 0.8, 0.7, 0.6,				
0.5, 0.4, 0.3, 0.2, 0.1, 0.05				
SOLAR-HRS AM1.5	Composite	0.5 – 4399.1 nm	SOLAR-ISS (< 300 nm): < 0.1 nm	< 0.02 nm
Disk-Integrated Spectrum	Solar spectral irradiance		QASUMEFTS (300 - 380 nm): < 0.025 nm	
			SPTS (> 380 nm): < 0.01 nm	
SOLAR-HRS AM1.5 (air)	Composite	0.5 – 4399.1 nm	SOLAR-ISS (< 300 nm): < 0.1 nm	< 0.02 nm
Disk-Integrated Spectrum	Solar spectral irradiance		QASUMEFTS (300 - 380 nm): < 0.025 nm	
			SPTS (> 380 nm): < 0.01 nm	
MPS-ATLAS-Kurucz	Solar Model	250.0 – 5000.0 nm	< 0.01 nm	< 0.01 nm
Disk-Integrated Spectrum				
MPS-ATLAS-Kurucz	Solar Model	250.0 – 5000.0 nm	< 0.01 nm	< 0.01 nm
Disk-center ($\mu = 1.0$)				
MPS-ATLAS-Vald3	Solar Model	250.0 – 5000.0 nm	< 0.01 nm	< 0.01 nm
Disk-Integrated Spectrum				
MPS-ATLAS-Vald3	Solar Model	250.0 – 5000.0 nm	< 0.01 nm	< 0.01 nm
Disk-center ($\mu = 1.0$)				

'Surface'	Pine forest	Deciduous forest	Ocean	Homogeneous snow
'Aerosols'	(a)	(b)	(c)	(d)
Continental	Х	Х	Х	Х
Desert	Х	Х	Х	Х
Maritime	Х	Х	Х	Х
Urban	Х	Х	Х	Х

16 scenarios studied for different 'Aerosols' types and targeted 'Surface' – SZA of 20°

'Aerosols'	Continental	Desert	Maritime	Urban
'SZA'	(a)	(b)	(c)	(d)
0°	Х	Х	Х	Х
20°	Х	Х	Х	Х
50°	Х	Х	Х	Х
70°	Х	Х	Х	Х

16 scenarios studied for different SZA and 'Aerosols' types – Pine forest targeted 'Surface'

Table 5. Uncertainties of atmospheric gas concentrations (1–Sigma) for various data retrievals based on different instrumental characteristics.

	Resolution: 1 nm					
SNR	50	100	250	500	1,000	2,000
CO ₂ [ppm]	10.998	5.602	2.204	1.130	0.575	0.277
CH ₄ [ppb]	125.028	66.209	25.245	12.302	6.625	3.108
O ₂ [Ratio]	11.024E-3	5.921E-3	2.433E-3	1.165E-3	0.636E-3	0.299E-3
H ₂ O [cm]	4.746E-3	2.271E-3	0.877E-3	0.441E-3	0.207E-3	0.114E-3
			Resol	ution: 6 nn	n	
SNR	50	100	Resol	ution: 6 nn 500	n 1,000	2,000
SNR CO ₂ [ppm]	50 33.974	100 16.720	Resol 250 6.426	ution: 6 nn 500 3.154	n 1,000 1.674	2,000 0.808
SNR CO ₂ [ppm] CH ₄ [ppb]	50 33.974 431.491	100 16.720 198.877	Resol 250 6.426 88.926	ution: 6 nn 500 3.154 40.973	n 1,000 1.674 21.593	2,000 0.808 11.317
SNR CO ₂ [ppm] CH ₄ [ppb] O ₂ [Ratio]	50 33.974 431.491 33.139E-3	100 16.720 198.877 16.209E-3	Resol 250 6.426 88.926 5.657E-3	ution: 6 nn 500 3.154 40.973 3.169E-3	n 1,000 1.674 21.593 1.588E-3	2,000 0.808 11.317 0.850E-3

The Levenberg-Marquardt algorithm is used to fit a model that relates the observed dimensionless transmittance functions to the concentrations of the atmospheric gases.

The Monte Carlo method is used to perform multiple simulations with randomized inputs within specified uncertainty bounds. This helps to estimate the range of gases concentrations (CO_2 , CH4, O_2 , H_2O) and their associated uncertainties.

Uvsq-Sat NG instrument spectral resolution: 1 nm								
Surface	Pine forest	Deciduous forest	Ocean	Homogeneous snow				
Aerosols	(a)	(b)	(c)	(d)				
Continental	0.5 ppm	0.4 ppm	77.6 ppm	0.3 ppm				
Desert	0.5 ppm	0.3 ppm	82.8 ppm	0.3 ppm				
Maritime	0.6 ppm	0.4 ppm	81.4 ppm	0.3 ppm				
Urban	0.5 ppm	0.4 ppm	78.4 ppm	0.3 ppm				
	Uvsq-Sat NG	instrument spectral re	solution: 5 nm					
Surface	Pine forest	Deciduous forest	Ocean	Homogeneous snow				
Aerosols	(a)	(b)	(c)	(d)				
Continental	1.3 ppm	0.9 ppm	234.5 ppm	0.7 ppm				
Desert	1.7 ppm	0.8 ppm	225.8 ppm	0.6 ppm				
Maritime	1.4 ppm	1.1 ppm	228.6 ppm	0.8 ppm				
Urban	1.3 ppm	0.9 ppm	233.2 ppm	0.7 ppm				

	Uvsq-Sat NG instrument spectral resolution: 1 nm							
Surface Aerosols	Pine forest (a)	Deciduous forest (b)	Ocean (c)	Homogeneous snow (d)				
Continental	4.9 ppb	3.7 ppb	194.1 ppb	2.5 ppb				
Desert	4.4 ppb	3.2 ppb	184.8 ppb	2.4 ppb				
Maritime	5.8 ppb	4.2 ppb	202.2 ppb	3.2 ppb				
Urban	4.7 ppb	3.4 ppb	193.4 ppb	2.8 ppb				
	Uvsq-Sat NG	instrument spectral res	solution: 5 nm	L				
Surface	Pine forest	Deciduous forest	Ocean	Homogeneous snow				
Aerosols	(a)	(b)	(c)	(d)				
Continental	12.2 ppb	10.2 ppb	735.6 ppb	7.8 ppb				
Desert	10.5 ppb	8.5 ppb	710.8 ppb	7.0 ppb				
Maritime	15.5 ppb	12.7 ppb	763.2 ppb	8.8 ppb				
Urban	12.2 ppb	10.3 ppb	730.5 ppb	7.1 ppb				

 CO_2 uncertainties (at 1 σ) determination according to the various simulation cases (requirements: 1 ppm).

 CH_4 uncertainties (at 1σ) determination according to the various simulation cases (requirements: 10 ppb).

Launch

	Launch option
Launch vehicle:	Falcon 9 T13
Launch site:	CCSFS/ Vandenberg
Launch period:	From Feb 2025
Typical orbit	550 +/- 35 km SSO
parameters:	LTDN: 10:30 TBC

Conclusions

- Project in progress

- Frequencies – 2208 MHz, 149.02 MHz, 401.85 MHz

B1a Beam designation	B2 Emi-Rcp	BR8 Action code	BR7a Group id.	BR9 Action code	BR47 Frequency band (MHz)		BR62 Expiry date for bringing into use	C4a Class of station	
UL148MHZ	R		3		148	-	150,05	27.10.2027	ED, EK
DL2GHZ	E		1		2207,2	-	2208,8	27.10.2027	EK, ER
DL401MHZ	E		2		401,7	-	402	27.10.2027	EK, ER

- Launch scheduled for February 2025 with Transporter 13
- Proposal to integrate a ready-to-use amateur radio payload

- Between 2019 and 2023, we supervised a multitude of students from various backgrounds (undergraduate, master's, and engineering schools): Patrick Lacroix, Juliette Antoun, Christophe Arnoult, Nicolas Vagnair, Josué Ngouma, Ivan Noukeu, Florian Lefevre, Minh Nguyen, Faustine Bouyssou, Vanessa Yahiaoui, Rania Makki, Gayane Karapetyan, Nicolas Duval d'Epremesnil, Fred Bocage, Hiro Classe, Cannelle Clavier, Loïc Njamen, Zinelabidine Loussaief, Pierre Vidal, Mathis Buet-Elfassy, Mickaël Galopeau, Paul Galey, Angèle Minet, Eleanore Fringian-Rupert, Louis Dechaseaux, Maiwenn Deniaud, Angsaran kenzhegaraeva, Eloi Baville, Maxime Huvelin, Gabriel Sousa Tavares, Kenny Ngo, Samuel Lhermitte, Aloïs Meckenstock, Hugo Jonnery, Hugo Teixeira, Anaïs Beckert, Oriane Rivier, Anthony Kalaydjian, Lyna Astito, ...

Conclusions

Merci pour votre attention ...